Protein degradation and increased mRNAs encoding proteins of the ubiquitin-proteasome proteolytic pathway in BC3H1 myocytes require an interaction between glucocorticoids and acidification.

نویسندگان

  • U Isozaki
  • W E Mitch
  • B K England
  • S R Price
چکیده

In rats and humans, metabolic acidosis stimulates protein degradation and glucocorticoids have been implicated in this response. To evaluate the importance of glucocorticoids in stimulating proteolysis, we measured protein degradation in BC3H1 myocytes cultured in 12% serum. Acidification accelerated protein degradation but dexamethasone did not augment this response. To reduce the influence of glucocorticoids and other hormones and cytokines in 12% serum that could mediate proteolysis, we studied BC3H1 myocytes maintained in only 1% serum. Acidification of the medium or addition of dexamethasone at pH 7.4 did not significantly increase protein degradation, while acidification plus dexamethasone accelerated proteolysis. The steroid receptor antagonist RU 486 prevented this proteolytic response. Acidification of the medium with 1% serum did increase the mRNAs for ubiquitin and the C2 proteasome subunit, but when dexamethasone was added the mRNAs were increased significantly more. The steroid-receptor antagonist RU 486 suppressed this response to the addition of dexamethasone but the mRNAs remained at the levels measured in cells at pH 7.1 alone. Thus, acidification alone can increase the mRNAs of the ubiquitin-proteasome proteolytic pathway, but both acidosis and glucocorticoids are required to stimulate protein degradation. Since these changes occur without adding cytokines or other hormones, we conclude that the proteolytic response to acidification requires glucocorticoids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of signals activating ubiquitin-proteasome proteolysis in a model of muscle wasting.

The ubiquitin-proteasome proteolytic system is stimulated in conditions causing muscle atrophy. Signals initiating this response in these conditions are unknown, although glucocorticoids are required but insufficient to stimulate muscle proteolysis in starvation, acidosis, and sepsis. To identify signals that activate this system, we studied acutely diabetic rats that had metabolic acidosis and...

متن کامل

The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway.

Chronic renal failure (CRF) is associated with negative nitrogen balance and loss of lean body mass. To identify specific proteolytic pathways activated by CRF, protein degradation was measured in incubated epitrochlearis muscles from CRF and sham-operated, pair-fed rats. CRF stimulated muscle proteolysis, and inhibition of lysosomal and calcium-activated proteases did not eliminate this increa...

متن کامل

Muscle wasting in insulinopenic rats results from activation of the ATP-dependent, ubiquitin-proteasome proteolytic pathway by a mechanism including gene transcription.

In normal subjects and diabetic patients, insulin suppresses whole body proteolysis suggesting that the loss of lean body mass and muscle wasting in insulinopenia is related to increased muscle protein degradation. To document how insulinopenia affects organ weights and to identify the pathway for accelerated proteolysis in muscle, streptozotocin-treated and vehicle-injected, pair-fed control r...

متن کامل

Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging.

We studied glucocorticoid-induced muscle wasting and subsequent recovery in adult (7-mo-old) and old (22-mo-old) rats, since the increased incidence of various disease states may result in glucocorticoids hypersecretion in aging. Adult and old rats received dexamethasone in their drinking water and were then allowed to recover. Muscle wasting occurred more rapidly in old rats and the recovery o...

متن کامل

Expression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines

Background: Activation of the ubiquitin-proteasome pathway in various malignancies, including colorectal cancer, is established. This pathway mediates the degradation of damaged proteins and regulates growth and stress response. The novel human gene, UBE2Q2, with a putative ubiquitin-conjugating enzyme activity, is reported to be overexpressed in some malignancies. We sought to investigate the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 5  شماره 

صفحات  -

تاریخ انتشار 1996